

1

Course Syllabus

1	Course title	System Modelling and Vibrations				
2	Course number	0908381				
3	Credit hours	3 Obligatory Course				
3	Contact hours (theory, practical)	3 Theoretical Hours				
		0301202				
4	Prerequisites/corequisites	0903211				
		0904222				
5	Program title	B.Sc. in Mechatronics Engineering				
6	Program code	08				
7	Awarding institution	The University of Jordan				
8	School	Engineering				
9	Department	Mechatronics				
10	Course level	3				
11	Year of study and semester (s)	1 st Semester 2023/2024				
12	Other department (s) involved in teaching the course					
13	Main teaching language	English				
14	Delivery method	✓ Face to face learning □Blended □Fully online				
1.7		✓ Moodle ✓ Microsoft Teams □Skype □Zoom				
15	Online platforms(s)	□Others				
16	Issuing/Revision Date	1/10/2023				

17 Course Coordinator:

Name: Dr. Adham Alsharkawi	Contact Hours: Sunday-Thursday from 12:00 – 13:00
Office: Mechatronics Eng. Dep.	Phone Number: 5355000 Ext. 23030
e-mail: a.sharkawi@ju.edu.jo	

18 Other instructors:

2

19 Course Description:

Introduction to system dynamics, nonlinearities and linearization, Laplace transform, solution of linear differential equations using Laplace transform, transfer function of linear systems, dominant poles, block diagram and signal-flow graph, state diagrams, state-space representation of linear systems, time response analysis of first-order and second-order, mathematical modelling of electrical networks, translational mechanical systems, and electromechanical systems, undamped one-degree of freedom vibration of a rigid body using the equation of motion and energy methods, analysis of undamped force vibration and viscous damped forced vibration.

20 Course aims and outcomes:

A. Aims:

The primary objective of this course is to interpret and analyze the dynamic behavior of physical systems. To reinforce students' understanding, we will utilize tools such as MATLAB, Simulink, and Python.

B. Student Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

SLO(s) SO(s)	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)
Understand the concept of a dynamic system							
Solve LTI differential equations using the Laplace Transform method							
Apply the block diagram representation to a dynamic system							
Apply Mason's rule to determine the transfer function of a dynamic system							
Construct state diagrams from differential equations							
Formulate the state-space representation of a dynamic system							
Formulate mathematical models for physical systems							
Demonstrate understanding of basic vibration theory							
Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions						~	

21. Topic Outline and Schedule:

Week	Lecture	Торіс	SLO	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resource
1	1.1	Introduction to System Modelling and Vibrations (SMV)					
	1.2	The Laplace Transform (I)					
2	2.1	The Laplace Transform (II)					
2	2.2	The Laplace Transform (III)					
	3.1	The Laplace Transform (IV)					
3	3.2	Transfer Function Approach to Modelling Dynamic Systems					
4	4.1	Simplifying Complex Block Diagram - Block Diagram Reduction (I)					
	4.2	Simplifying Complex Block Diagram - Block Diagram Reduction (II)					
5	5.1	Mason's Rule and the Signal- Flow Graph (I)					
	5.2	Mason's Rule and the Signal- Flow Graph (II)					
6	6.1	Obtaining a Transfer Function from a State-Space Representation					
	6.2	Signal-Flow Graph of State Equations					
7	7.1	Time Response Analysis (I)					
/	7.2	Time Response Analysis (II)					
8	8.1	Time Response Analysis (III)					

QF-AQAC-03.02.01

	8.2	Time Response Analysis (IV)		
9	9.1	Time Response Analysis (V)		
	9.2	Time Response Analysis (VI)		
	10.1	System Response with Additional Poles and Zeros		
10	10.2	Mathematical Modelling of Electrical Systems (I)		
11	11.1	Mathematical Modelling of Electrical Systems (II)		
11	11.2	Mathematical Modelling of Mechanical Systems (I)		
12	12.1	Mathematical Modelling of Mechanical Systems (II)		
	12.2	Electromechanical systems		
13	13.1	Electromechanical systems		
15	13.2	Free vibrations (I)		
14	14.1	Free vibrations (II)		
	14.2	Forced vibrations (I)		
15	15.1	Forced vibrations (II)		
	15.2	Linearization		

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLO(s) are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLO(s)	Period (Week)	Platform
Midterm Exam	30	Topics Covered in the First 10 Weeks		10 th Week	On Campus
Quiz	10	Mathematical Modelling (Electrical, Mechanical, Electromechanical)		13 th Week	On Campus
MATLAB	10	MATLAB for SMV		15 th Week	On Campus
Final Exam	50	All Topics			

23 Course Requirements

(e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

Every student is required to have a computer equipped with MATLAB and a reliable internet connection.

24 Course Policies:

• Attendance:

Students are expected to attend EVERY class session. They are responsible for all materials, announcements, schedule changes, and other pertinent information discussed in class.

• Make-up Examinations

Make-up exams will not be offered for any scheduled exams throughout the course. Exceptions are limited to:

- The passing of immediate family members (father, mother, sister, or brother).
- Hospitalization (as an inpatient) at the time of the scheduled examination.

Any other circumstances will result in a score of zero for the respective exam.

25 References:

Required book:

- System Dynamics by Katsuhiko Ogata. 4th Edition, Prentice Hall. **Recommended books:**
- Control Systems Engineering, by Norman S. Nise, 6th Edition, Johm Wiley.
- Modern Control Systems. Richard Dorf and Robert Bishop, 12th Edition, Prentice Hall.
- Modern Control Engineering, Katsuhiko Ogata, 5th Edition n, Prentice Hall.

26 Additional information:

Name	Signature	Date
Dr. Adham Alsharkawi		